
Hands-On Data Science

Sharing R Code — With Style

Graham.Williams@togaware.com

12th December 2016

Visit http://HandsOnDataScience.com/ for more Chapters.

Data scientists write programs to ingest, manage, wrangle, visualise, analyse and model data
in many ways. It is an art to be able to communicate our explorations and understandings
through a language, albeit a programming language. Of course our programs must be executable
by computers but computers care little about our programs except that they be syntactically
correct. Our focus should be on engaging others to read and understand the narratives we present
through our programs.

In this chapter we present simple stylistic guidelines for programming in R that support the
transparency of our programs. We should aim to write programs that clearly and effectively
communicate the story of our data to others. Our programming style aims to ensure consistency
and ease our understanding whilst of course also encouraging correct programs for execution by
computer.

A version of this is included in an upcoming book from CRC Press.

As we work through this chapter, new R commands will be introduced. Be sure to review the
command’s documentation and understand what the command does. You can ask for help using
the ? command as in:

?read.csv

We can obtain documentation on a particular package using the help= option of library():

library(help=rattle)

This chapter is intended to be hands on. To learn effectively, you are encouraged to have R
running (e.g., RStudio) and to run all the commands as they appear here. Check that you get
the same output, and you understand the output. Try some variations. Explore.

Copyright © 2000-2016 Graham Williams. This work is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License allowing this work to be copied, distributed, or adapted, with
attribution and provided under the same license.

http://HandsOnDataScience.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Hands-On Data Science Sharing R Code — With Style

1 Why We Should Care

Programming is an art and a way to express ourselves. Often that expression is unique to
us individually. Just as we can often tell the author of a play from their style or the artist
from the painting, so we can often tell the programmer from the program coding structures and
styles.

As we write programs we should keep in mind that something like 90% of a programmer’s
time (at least in business and government) is spent reading and modifying and extending other
programmer’s code. We need to facilitate the task—so that others can quickly come to a clear
understanding of the narrative.

As data scientists we also practice this art of programming and indeed even more so to share the
narrative of what we discover through our living and breathing of data. Writing our programs
so that others understand why and how we analysed our data is crucial. Data science is so much
more than simply building black box models—we should be seeking to expose and share the
process and the knowledge that is discovered from the data.

Data scientists rarely begin a new project with an empty coding sheet. Regularly we take our
own or other’s code as a starting point and begin from that. We find code on Stack Overflow or
elsewhere on the Internet and modify it to suit our needs. We collect templates from other data
scientists and build from there, tuning the templates for our specific needs and datasets.

In being comfortable to share our code and narratives with others we often develop a style.
Dictating a style to others is often a sensitive issue. We want freedom to innovate and to express
ourselves but we also need consistency in how we do that. Often a style guide helps us as we
journey through a new language and gives us a foundation for developing, over time, our own
style.

A style guide is useful for sharing our tips and tricks for communicating clearly through our
programs—our expression of how to solve a problem or actually how we model the world. We
express this in the form of a language—a language that also happens to be executable by a
computer. In this language we follow precisely specified syntax/grammar to develop sentences,
paragraphs, and whole stories. Whilst there is infinite leeway in how we express ourselves and we
each express ourselves differently we share a common set of principles as our style guide.

My style guide has evolved from over 30 years of programming and data experience with projects
in expert systems, rule-based systems, machine learning, data mining, analytics and now data
science—though they are all data sciences. Nonetheless we note that style changes over time and
sometimes is motivated by changes in the technology itself, and we should allow variation as we
mature and learn and change our views.

In short, irrespective of whether the specific style suggestion suits you or not, do aim when
coding to communicate to other human readers in the first instance and execution of code as a
secondary (though critical) intention. When we write programs we write for others to easily
read and to learn from and to build upon.

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 1 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

2 Naming Files

1. Files containing R code use the uppercase .R extension. This aligns with the fact that the
language is unambiguously called “R” and not “r.” Ensure that files are under version
control such as with github to allow recovery of old versions of the file and multiple people
working on the same file.

Preferred

power_analysis.R

Discouraged

power_analysis.r

2. Other files may contain support functions that we have written to help us repeat tasks
more easily. Name the file to match the name of the function defined within the file. For
example, if the support function we’ve defined in the file is myFancyPlot() then name the
file as below. This clearly differentiates support function filenames from analysis scripts
and we have a ready record of the support functions we might have developed simply by
listing the folder contents.

Preferred

myFancyPlot.R

Discouraged

MyFancyPlot.R

my_fancy_plot.R

my.fancy.plot.R

my_fancy_plot.r

3. R binary data filenames end in ”.RData”. This is descriptive of the file containing data for
R and conforms to a capitalised naming scheme.

Preferred

weather.RData

Discouraged

weather.rdata

weather.Rdata

weather.rData

4. Standard file names use lowercase where there is a choice.

Preferred

weather.csv

Discouraged

weather.CSV

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 2 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

3 Multiple File Scripts

5. For multiple scripts associated with a project that have a processing order associated with
them use a simple two digit number prefix scheme. Separating by 10’s allow additional
script files to be added into the sequence.

Suggested

00_setup.R

10_ingest.R

20_observe.R

30_process.R

40_meta.R

50_save.R

60_model.R

62_rpart.R

64_randomForest.R

66_xgboost.R

68_h20.R

72_lm.R

74_rpart.R

76_mxnet.R

80_evaluate.R

90_deploy.R

99_all.R

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 3 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

4 Naming Objects

6. Function names begin lowercase with capitalised verbs. A common alternative is to use
underscore to separate words but we use this specifically for variables.

Preferred

displayPlotAgain()

Discouraged

DisplayPlotAgain()

displayplotagain()

display.plot.again()

display_plot_again()

7. Variable names and function argument names use underscore separated nouns. A
very common alternative is to use a period in place of the underscore, particularly for
function named arguments which is generally okay. However, the period is often used
to identify class hierarchies in R and the period has specific meanings in many database
systems which presents an issue when importing from and exporting to databases.

Preferred

num_frames <- 10

Discouraged

num.frames <- 10

numframes <- 10

numFrames <- 10

8. Keep variable and function names on the shorter side but self explanatory. A long variable
or function name is problematic with layout and similar names are hard to tell apart.
Short names including single character names (like x and y) are often used within functions
and facilitate understanding, particularly for mathematically oriented functions but should
otherwise be avoided.

Preferred

Perform addition.

addSquares <- function(x, y)

{
return(x^2 + y^2)

}

Discouraged

Perform addition.

addSquares <- function(first_argument, second_argument)

{
return(first_argument^2 + second_argument^2)

}

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 4 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

5 Comments

9. Use a single # to introduce ordinary comments and separate comments from code with a
single empty line before and after the comment. Comments should be full sentences, ending
with a full stop.

Preferred

How many locations are represented in the dataset.

ds$location %>%

unique() %>%

length()

Identify variables that have a single value.

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print() ->

constants

10. Sections with all uppercase titles can be separated visually beginning with 4 comment
characters and ending with 32 dashes. Sub-sections with initial capital titles begin with 2
comment characters and end with 16 dashes. The last 4 dashes at the end of the comment
are a section marker supported by RStudio. Other conventions are available for structuring
a document and different environments support different conventions.

Preferred

Data Wrangling --------------------------------

Normalise Variable Names ----------------

Review the names of the dataset columns.

names(ds)

Normalise the dataset variable names and confirm they are as expected.

names(ds) %<>% rattle::normVarNames() %T>% print()

Specifically Wrangle weatherAUS ----------------

Convert the character variable 'date' to a Date data type.

class(ds$date)

ds$date %<>% lubridate::ymd() %>% as.Date() %T>% {class(.); print()}

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 5 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

6 Layout

11. Keep lines to less then 80 characters for easier human reading and fitting on a printed page.

12. Align curly braces so that an opening curly brace is on a line by itself. This is at odds
with many style guides. My motivation is that the open and close curly braces belong to
each other more so than the closing curly brace belonging to the keyword (while in the
example). The extra white space helps to reduce code clutter. This style also makes it
easier to comment out, for example, just the line containing the while and still have valid
syntax. We tend not to need to foucs so much any more on reducing the number of lines
in our code so we can now avoid Egyptian brackets.

Preferred

while (blueSky())

{
openTheWindows()

doSomeResearch()

}
retireForTheDay()

Alternative

while (blueSky()) {
openTheWindows()

doSomeResearch()

}
retireForTheDay()

13. If a code block contains a single statement then curly braces remain useful to emphasise
the limit of the code block, however some prefer to drop them.

Preferred

while (blueSky())

{
doSomeResearch()

}
retireForTheDay()

Alternatives

while (blueSky())

doSomeResearch()

retireForTheDay()

while (blueSky()) doSomeResearch()

retireForTheDay()

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 6 of 18

Generated 12th December 2016 9:26am +08:00

https://blog.codinghorror.com/new-programming-jargon/

Hands-On Data Science Sharing R Code — With Style

7 If-Else Issue

14. R is an interpretive language and encourages interactive development of code within the R
console. Consider typing the following code into the R console.

if (TRUE)

{
seed <- 42

}
else

{
seed <- 666

}

After the first closing brace the interactive interpreter identifies a syntactically valid state-
ment (an if with no else) and so executes it. The following else becomes a syntactic
error. This will be true irrespective of whether we are interactively typing the commands
directly into the R console or we are sending the commands from our editor in Emacs ESS
or RStudio to the R console.

Error: unexpected 'else' in "else"

> source("examples.R")

Error in source("examples.R") : tmp.R:5:1: unexpected 'else'

4: }
5: else

^

This is not an issue when the if statement is embedded inside a block of code as within
curly braces as we might use within a function definition. Here the text we enter is not
parsed until we hit the final closing brace.

{
if (TRUE)

{
seed <- 42

}
else

{
seed <- 666

}
}

There is no simple solution for the interpreter so we might need to do something less
satisfactory for top level statements in a script file or when writing interactively:

if (TRUE) {
seed <- 42

} else {
seed <- 666

}

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 7 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

8 Indentation

15. Use a consistent indentation. I personally prefer 2 within both my Emacs ESS and RStudio
environments with a good font (e.g., Courier font in RStudio works well but Courier 10picth
is too compressed). Some argue that 2 spaces is not enough to show the structure when
using smaller fonts. If it is an issue for you then try 4 or choose a different font. We still
often have limited lengths on lines on some forms of displays where we might want to share
our code and about 80 characters seems about right. Indenting 8 characters is probably
too much because it makes it difficult to read through the code with such large leaps for
our eyes to follow to the right. Nonetheless, there are plenty of tools to re-indent to a
different level as we choose.

Preferred

window_delete <- function(action, window)

{
if (action %in% c("quit", "ask"))

{
ans <- TRUE

msg <- "Terminate?"

if (! dialog(msg))

ans <- TRUE

else

if (action == "quit")

quit(save="no")

else

ans <- FALSE

}
return(ans)

}

Not Ideal

window_delete <- function(action, window)

{
if (action %in% c("quit", "ask"))

{
ans <- TRUE

msg <- "Terminate?"

if (! dialog(msg))

ans <- TRUE

else

if (action == "quit")

quit(save="no")

else

ans <- FALSE

}
return(ans)

}

16. Always use spaces rather than the invisible tab character.

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 8 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

9 Alignment

17. Align the assignment operator for blocks of assignments. The rationale for this idiosyncratic
style suggestion is that it is easier for us to read the assignments in a tabular form than
it is when it is jagged. This is akin to reading data in tables—such data is much easier to
read when it is aligned. Space is used to enhance readability.

Preferred

a <- 42

another <- 666

b <- mean(x)

brother <- sum(x)/length(x)

Default

a <- 42

another <- 666

b <- mean(x)

brother <- sum(x)/length(x)

18. In the same vein there is a suggestion that we might align the magrittr::%>% operator in
pipelines and the base::+ operator for ggplot2 (Wickham and Chang, 2016) layers. This
provides a visual symmetry and avoids the operators being lost amongst the text. Such
alignment though requires extra work and is not supported by editors. Also there is a risk
the operator too far to the right is overlooked n an inspection of the code.

Preferred

ds <- weatherAUS

names(ds) <- rattle::normVarNames(names(ds))

ds %>%

group_by(location) %>%

mutate(rainfall=cumsum(risk_mm)) %>%

ggplot(aes(date, rainfall)) +

geom_line() +

facet_wrap(~location) +

theme(axis.text.x=element_text(angle=90))

Alternative

ds <- weatherAUS

names(ds) <- rattle::normVarNames(names(ds))

ds %>%

group_by(location) %>%

mutate(rainfall=cumsum(risk_mm)) %>%

ggplot(aes(date, rainfall)) +

geom_line() +

facet_wrap(~location) +

theme(axis.text.x=element_text(angle=90))

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 9 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

10 Sub-Block Alignment

19. An interesting variation on the alignment of pipelines including graphics layering is to
indent the graphics layering and include it within a code block (surrounded by curly braces).
This highlights the graphics layering as a different type of concept to the data pipeline and
ensures the graphics layering stands out as a separate stanza to the pipeline narrative.
Note that a period is then required in the ggplot2::ggplot() call to access the pipelined
dataset. The pipeline can of course continue on from this expression block. Here we show
it being piped into a base::print() to have the plot displayed and then saved into a
variable for later processing. This style was suggested by Michael Thompson.

Preferred

ds <- weatherAUS

names(ds) <- rattle::normVarNames(names(ds))

ds %>%

group_by(location) %>%

mutate(rainfall=cumsum(risk_mm)) %>%

{
ggplot(., aes(date, rainfall)) +

geom_line() +

facet_wrap(~location) +

theme(axis.text.x=element_text(angle=90))

} %T>%

print() ->

plot_cum_rainfall_by_location

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 10 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

11 Functions

20. Functions should be no longer than a screen or a page. Long functions generally suggest
the opportunity to consider more modular design. Take the opportunity.

21. Generally prefer a single base::return() from a function. Understanding a function with
multiple and nested returns can be difficult. Sometimes though, particularly for simple
functions as below multiple returns work just fine.

Preferred

factorial <- function(x)

{
if (x==1)

{
result <- 1

}
else

{
result <- x * factorial(x-1)

}

return(result)

}

Alternative

factorial <- function(x)

{
if (x==1)

{
return(1)

}
else

{
return(x * factorial(x-1))

}
}

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 11 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

12 Function Definition Layout

22. Align function arguments in a function definition one per line.

Preferred

showDialPlot <- function(label="UseR!",

value=78,

dial.radius=1,

label.cex=3,

label.color="black")

{
...

}

Discouraged

showDialPlot <- function(label="UseR!", value=78, dial.radius=1,

label.cex=3, label.color="black")

{
...

}

showDialPlot <- function(label="UseR!",

value=78,

dial.radius=1,

label.cex=3,

label.color="black")

showDialPlot <- function(

label="UseR!",

value=78,

dial.radius=1,

label.cex=3,

label.color="black"

)

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 12 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

13 Function Call Layout

23. Don’t add spaces around the = for named arguments in parameter lists. Visually this ties
the named arguments together and highlights this as a parameter list. This style is at odds
with the default R printing style and is the only situation where I tightly couple a binary
operator. In all other situations there should be a space around the operator.

Preferred

readr::read_csv(file="data.csv",

skip=1e5,

na=".",

progress=FALSE)

Discouraged

read.csv(file = "data.csv", skip =

1e5, na = ".", progress

= FALSE)

24. Arguments to function calls can also be aligned similarly to the function definition. All
but the last argument can be easily commented out during testing of different options in
using the function. An idiosyncratic alternative works well to easily comment out specific
arguments except for the first one. The first argument is often an important one and
perhaps not optional whereas later arguments are often optional and we might comment
them out whilst we are tuning our code. This is quite a common style amongst SQL
programmers.

Preferred

dialPlot(label="UseR!",

value=78,

dial.radius=1,

label.cex=3,

label.color="black")

Alternative

dialPlot(label="UseR!"

, value=78

, dial.radius=1

, label.cex=3

, label.color="black"

)

Discouraged

dialPlot(label="UseR!", value=78, dial.radius=1,

label.cex=3, label.color="black")

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 13 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

14 Functions from Packages

25. R has a mechanism (called namespaces) for identifying the names of functions and variables
from specific packages. There is no rule that says a package provided by one author can
not use a function name already used by another package or by base R. Thus functions
from one package might overwrite the definition of a function with the same name from
another package or from base R itself. A mechanism to ensure we are using the correct
function is to prefix the function call with the name of the package providing the function,
just like plyr::mutate().

Generally in commentary we will use this notation to clearly identify the package which
provides the function. In our interactive R usage and in scripts we tend not to use the
namespace notation. It can clutter the code and arguably reduce its readability even
though there is the benefit of clearly identifying where the function comes from.

For common packages we tend not to use namespaces but for less well known packages
a namespace at least on first usage provides valuable information. Also, when a package
provides a function that has the same name as a function in another namespace it is useful
to explicitly supply the namespace prefix.

Note that package writers use the namespace notation for all calls to functions defined in
external packages.

Preferred

library(dplyr) # Data wranlging, mutate().

library(lubridate) # Dates and time, ymd_hm().

library(ggplot2) # Visualize data.

ds <- get(dsname) %>%

mutate(timestamp=ymd_hm(paste(date, time))) %>%

ggplot(aes(timestamp, measure)) +

geom_line() +

geom_smooth()

Alternative
The use of the namespace prefix increases the verbosity of the presentation and that has a
negative impact on the readability of the code. However it makes it very clear where each
function comes from.

ds <- get(dsname) %>%

dplyr::mutate(timestamp=

lubridate::ymd_hm(paste(date, time))) %>%

ggplot2::ggplot(ggplot2::aes(timestamp, measure)) +

ggplot2::geom_line() +

ggplot2::geom_smooth()

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 14 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

15 Assignment

26. Avoid using base::= for assignment. It was introduced in S-Plus in the late 1990’s as a
convenience but is ambiguous (function call named arguments, mathematical concept of
equality). The traditional backward assignment operator base::<- implies a flow of data
and for readability is explicit about the intention.

Preferred

a <- 42

b <- mean(x)

Discouraged

a = 42

b = mean(x)

27. The forward assignment base::-> should generally be avoided. A single use case justifies it
in pipelines where logically we do an assignment at the end of a long sequence of operations.
As a side effect operator it is vitally important to highlight the assigned variable whenever
possible and so out-denting the variable after the forward assignment to highlight it is
recommended.

Preferred

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print() ->

constants

Traditional

constants <-

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print()

Discouraged

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print() ->

constants

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 15 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

16 Miscellaneous

28. Do not use the semicolon to terminate a statement unless it makes a lot of sense to have
multiple statements on the one line. Line breaks in R make the semicolon optional.

Preferred

threshold <- 0.7

maximum <- 1.5

minimum <- 0.1

Dicouraged

threshold <- 0.7; maximum <- 1.5; minimum <- 0.1

Discouraged

threshold <- 0.7;

maximum <- 1.5;

minimum <- 0.1;

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 16 of 18

Generated 12th December 2016 9:26am +08:00

Hands-On Data Science Sharing R Code — With Style

17 Further Reading

There are many style guides available and the guidelines here are generally consistent and overlap
considerably with many others. I try to capture he motivation for each choice. My style choices
are based on my experience over 30 years of programming in very many different languages and
it should be recognised that some elements of style are personal preference and others have very
solid foundations. Unfortunately in reading some style guides the choices made are not always
explained and without the motivation we do not really have a basis to choose or to debate.

The guidelines at Google and from Hadley Wickham and Colin Gillespie are similar but I
have some of my own idiosyncrasies. Also see Wikipedia for an excellent summary of many
styles.

Rasmus B̊åath, in The State of Naming Conventions in R, reviews naming conventions used in
R, finding that the initial lower case capitalised word scheme for functions was the most popular,
and dot separated names for arguments similarly. We are however seeing a migration away from
the dot in variable names as it is also used as a class separator for object oriented coding. Using
the underscore is now preferred.

I also thank the many colleagues over the years who have shaped or argued choices. Thanks also
for recent comments from Andrie de Vries, Jacob Spoelstra, Angus Taylor, Michael Thompson,
and Doug Dame.

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 17 of 18

Generated 12th December 2016 9:26am +08:00

https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html
https://csgillespie.wordpress.com/2010/11/23/r-style-guide/
http://en.wikipedia.org/wiki/Indent_style
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf

Hands-On Data Science Sharing R Code — With Style

18 References

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Wickham H, Chang W (2016). ggplot2: An Implementation of the Grammar of Graphics. R
package version 2.1.0, URL https://CRAN.R-project.org/package=ggplot2.

Williams GJ (2009). “Rattle: A Data Mining GUI for R.” The R Journal, 1(2), 45–55. URL
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of excavating data for knowledge
discovery. Use R! Springer, New York.

Williams GJ (2016). rattle: Graphical User Interface for Data Mining in R. R package version
5.0.2, URL http://rattle.togaware.com/.

This document, sourced from StyleO.Rnw bitbucket revision 165, was processed by KnitR ver-
sion 1.13 of 2016-05-09 and took 1.8 seconds to process. It was generated by gjw on Ubuntu
16.10.

Copyright © 2000-2016 Graham@togaware.com Module: StyleO Page: 18 of 18

Generated 12th December 2016 9:26am +08:00

https://www.R-project.org/
https://CRAN.R-project.org/package=ggplot2
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://rattle.togaware.com/

	Why We Should Care
	Naming Files
	Multiple File Scripts
	Naming Objects
	Comments
	Layout
	If-Else Issue
	Indentation
	Alignment
	Sub-Block Alignment
	Functions
	Function Definition Layout
	Function Call Layout
	Functions from Packages
	Assignment
	Miscellaneous
	Further Reading
	References

