Data Science with R
Evaluating Model Performance

Graham.Williams@togaware.com

16th August 2014

Visit http://HandsOnDataScience.com/ for more Chapters.

This module explores the options for evaluating the performance of models. We introduce tech-
niques for evaluating the performance on a testing dataset, as well as ongoing performance
evaluation.

The required packages for this module include:

library(rattle)
library(dplyr)
library(e1071)
library(rpart)
library(randomForest)
library(wsrpart)
library(wsrf)
library(gmodels)
library (ROCR)
library(ggplot2)

As we work through this chapter, new R commands will be introduced. Be sure to review the
command’s documentation and understand what the command does. You can ask for help using
the ? command as in:

?read.csv

We can obtain documentation on a particular package using the help= option of 1library():

library(help=rattle)

This chapter is intended to be hands on. To learn effectively, you are encouraged to have R
running (e.g., RStudio) and to run all the commands as they appear here. Check that you get
the same output, and you understand the output. Try some variations. Explore.

Copyright (©) 2013-2014 Graham Williams. You can freely copy, distribute,
or adapt this material, as long as the attribution is retained and derivative ‘@ @@@\

work is provided under the same license.

http://HandsOnDataScience.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Data Science with R Hands-On Evaluating Model Performance

1 Prepare Data for Modelling

Identify the dataset

dsname <- "weatherAUS"

ds <- tbl_df (get (dsname))

names(ds) <- normVarNames(names(ds)) # Lower case wvariable names.
vars <- names(ds)

target <- '"rain_tomorrow"

risk <- "risk_mm"

id <- c("date", "location")

Ignore the IDs and the risk variable.
ignore <- c(id, if (exists("risk")) risk)

Ignore wvariables which are completely missing.

mvc <- sapply(ds[vars], function(x) sum(is.na(x)))
mvn <- names(which(mvc == nrow(ds)))
ignore <- union(ignore, mvn)

Inittalise the variables
vars <- setdiff (vars, ignore)

Variable roles.

inputs <- setdiff (vars, target)

numi <- which(sapply(ds[inputs], is.numeric))
numc <- names (numi)

cati <- which(sapply(ds[inputs], is.factor))
catc <- names(cati)

Remove all observations with a missing target.
ds <- ds[!is.na(ds[target]),]

Impute missing values needed for randomForest().
if (sum(is.na(ds[vars]))) ds[vars] <- na.roughfix(ds[vars])

Ensure the target <s categoric.
ds[target] <- as.factor(ds[[target]])

Number of observations.
nobs <- nrow(ds)

Prepare for model building.

form <- formula(paste(target, "~ ."))
seed <- 328058

train <- sample(nobs, 0.7*nobs)

test <- setdiff(seq_len(nobs), train)
actual <- ds[test, target]

risks <- ds[test, riskl]

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO

Page: 1 of 22

Data Science with R Hands-On Evaluating Model Performance

2 Build Models

We build a selection of models, including a decision tree (Therneau and Atkinson, 2014), random
forest (Breiman et al., 2012), weighted subspace of rpart decision trees (Zhalama and Williams,
2014) and weighted subspace random forest (Meng et al., 2014).

Naive Bayes

library(e1071)

model <- m.nb <- naiveBayes(form, ds([train, vars]) # 1s
cl.nb <- predict(model, ds[test, vars], type="class") # 20s
pr.nb <- predict(model, ds[test, vars], type="raw")[,2] # 20s

Deciston tree

library(rpart)

model <- m.rp <- rpart(form, ds[train, vars]) # 6s
cl.rp <- predict(model, ds[test, vars], type="class")

pr.rp <- predict(model, ds[test, vars], type="prob")[,2]

Random forest
library(randomForest)

model <- m.rf <- randomForest(form, ds[train, vars], ntree=100) # 20s
cl.rf <- predict(model, ds[test, vars], type="class")
pr.rf <- predict(model, ds[test, vars], type="prob")[,2]

Weighted subspace rpart

library(wsrpart)

model <- m.wsrp <- wsrpart(form, ds([train, vars], ntree=10) # 30s
cl.wsrp <- predict(model, ds[test, vars], type="class")

pr.wsrp <- predict(model, ds[test, vars], type="prob")[,2]

Weighted subspace random forest

library (wsrf)
model <- m.wsrf <- wsrf(form, ds[train, vars], ntree=10) # 30s
cl.wsrf <- predict(model, ds[test, vars], type="class")

pr.wsrf <- predict(model, ds[test, vars], type="prob")[,2]

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 2 of 22

Data Science with R Hands-On Evaluating Model Performance

3 Confusion Matrix

A confusion matrix reports textually the performance of a predictive model’s predictions against
the actual classes.

We can easily generate a confusion matrix using table (). Here we report the actual number of
predictions in the four categories of true/false positive/negative.

table(actual, cl.nb, dnn=c("Actual", "Predicted"))

Predicted

Actual No Yes
No 17913 2954
Yes 2301 3886

table(actual, cl.rp, dnn=c("Actual", "Predicted"))

Predicted

Actual No Yes
No 20171 696
Yes 3997 2190

table(actual, cl.rf, dnn=c("Actual", "Predicted"))

Predicted

Actual No Yes
No 19775 1092
Yes 2866 3321

table(actual, cl.wsrp, dnn=c("Actual", "Predicted"))

Predicted

Actual No Yes
No 20143 724
Yes 3928 2259

table(actual, cl.wsrf, dnn=c("Actual", "Predicted"))

Predicted

Actual No Yes
No 19947 920
Yes 3328 2859

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 3 of 22

https://secure.wikimedia.org/wikipedia/en/wiki/confusion matrix

Data Science with R Hands-On Evaluating Model Performance

4 Confusion Matrix with Percentage

We can convert to percentages, and include a column to report on the class error rate:

pcme <- function(actual, cl)
{
x <- table(actual, cl)
tbl <- cbind(round(x/length(actual), 2),
Error=round(c(x[1,2]/sum(x[1,]), x[2,1]/sum(x[2,]1)), 2))
names (attr(tbl, "dimnames")) <- c("Actual", "Predicted")
tbl

}

pcme (actual, cl.nb)

Predicted

Actual No Yes Error
No 0.66 0.11 0.14
Yes 0.09 0.14 0.37

pcme (actual, cl.rp)

Predicted

Actual No Yes Error
No 0.75 0.03 0.03
Yes 0.15 0.08 0.65

pcme (actual, cl.rf)

Predicted

Actual No Yes Error
No 0.73 0.04 0.05
Yes 0.11 0.12 0.46

pcme (actual, cl.wsrp)

Predicted

Actual No Yes Error
No 0.74 0.03 0.03
Yes 0.15 0.08 0.63

pcme (actual, cl.wsrf)

Predicted

Actual No Yes Error
No 0.74 0.03 0.04
Yes 0.12 0.11 0.54

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 4 of 22

Data Science with R Hands-On Evaluating Model Performance

5 Overall and Average Class Error

The overall error is simply the number of observations mis-classified divided by the total number
of observations.

overall <- function(x) round((x[1,2] + x[2,1]) / sum(x), 2)
overall (table(actual, cl.nb)/length(actual))

[1]1 0.19

overall(table(actual, cl.rp)/length(actual))
[1] 0.17

overall (table(actual, cl.rf)/length(actual))
[1] 0.15

overall(table(actual, cl.wsrp)/length(actual))
[1] 0.17

overall (table(actual, cl.wsrf)/length(actual))
[1] 0.16

The overall error rate is sometimes quite a blunt measure of the performance of a model, and is
particularly misleading when the classes are unbalanced. Consider the case where the majority
class has an error rate of 10% and the minority class has an error rate of 30%. Overall the error
rate will be closer to the 10% error rate because of the sheer number of observations of this class.
That is quite misleading given our usual interest in the minority class.

The averaged class error rate is simply the average of the class errors.

avgerr <- function(x) round(mean(c(x[1,2], x[2,1]) / apply(x, 1, sum)), 2)
avgerr (table(actual, cl.nb)/length(actual))

[1] 0.26

avgerr (table(actual, cl.rp)/length(actual))
[1] 0.34

avgerr (table(actual, cl.rf)/length(actual))
[1] 0.26

avgerr (table(actual, cl.wsrp)/length(actual))
[1] 0.33

avgerr (table(actual, cl.wsrf)/length(actual))
[1] 0.29

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 5 of 22

Data Science with R Hands-On Evaluating Model Performance

6 Cross Tabulation Confusion Matrix

A cross-tabulation can be used to generate a confusion-matrix to present the performance of
a model. Here we use CrossTable() from gmodels (source code and/or documentation con-
tributed by Ben Bolker et al., 2013) to generate the table. This includes the Chi-square test of
the independence of all table factors

library(gmodels)

CrossTable(actual, cl.nb)

#i#

##

Cell Contents

I e e |

| N |

| Chi-square contribution |

| N / Row Total |

| N / Col Total |

| N / Table Total |

I e e |

##

##

Total Observations in Table: 27054

#it

#i#t

| cl.nb

actual | No | Yes | Row Total |
- | |Je=———————— | |
#i# No | 17913 | 2954 | 20867 |
| 345.742 | 1021.758 | |
| 0.858 | 0.142 | 0.771 |
#it | 0.886 | 0.432 | |
#it | 0.662 | 0.109 | |
- | o= | | o= |
Yes | 2301 | 3886 | 6187 |
| 1166.090 | 3446.102 | |
| 0.372 | 0.628 | 0.229 |
| 0.114 | 0.568 | |
#H# | 0.085 | 0.144 |

- | o= | | o= |
Column Total | 20214 | 6840 | 27054 |
| 0.747 | 0.253 | |
- | === | |s===m—me—— |
#i#

#i#

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 6 of 22

Data Science with R

Hands-On

Evaluating Model Performance

7 Cross Tabulation:

CrossTable(actual, cl.rf)

Random Forest

1092
1570.122
0.052
0.247
0.040
3321
5295.577
0.537
0.753
0.123

##

#i#

Cell Contents

e
| N
| Chi-square contribution
| N / Row Total
| N / Col Total
| N / Table Total
I e e
##

#i#

Total Observations in Table: 27054
#it

#it

| cl.rf

actual | No
R R
#H# No | 19775
#i# | 306.035
| 0.948
| 0.873
#i# | 0.731
##H - |[-—————————
#i Yes | 2866
| 1032.171
| 0.463
| 0.127
#H# | 0.106
H# ————mmmmmmme e R
Column Total | 22641
| 0.837
R | —==—mmm -
#i#

#i#

Copyright (©) 2013-2014 Graham@togaware.com

Module: EvaluateO

Page: 7 of 22

Data Science with R Hands-On Evaluating Model Performance

8 ROC Curves

The Receiver Operating Characteristics (ROC) curve provides a visual guide to performance.
The ROCR (Sing et al., 2013) package provides the functionality.

library (ROCR)

pr <- prediction(pr.rf, actual)

pe <- performance(pr, "tpr", "fpr")

pd <- data.frame(fpr=unlist(pe@x.values), tpr=unlist(pe@y.values))

p <- ggplOt(Pd, aeS(X=fpr, y=tpr))
p <- p + geom_line(colour="red")
p <- p + xlab("False Positive Rate") + ylab("True Positive Rate")

P

1.00 -

0.75-

0.50 -

True Positive Rate

0.25-

0.00 -

1
0.00 0.25 0.50 0.75 1.00
False Positive Rate

The ROC curve plots the true positive rate against the false positive rate. Here we see the curve
and note that the more area under the curve (AUC) the better is the performance. To interpret,
consider the false positive rate of 0.2 which corresponds to a true positive rate of about 0.8. Using
the model to prioritise observations, to identify 80% of the true positives, we falsely include 20%
of the false positives.

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 8 of 22

Data Science with R Hands-On Evaluating Model Performance

9 ROC Curves—All Models

Here we display all ROC curves. A simple function is used to capture the code that generates
the plot from the predictions provided by the model.

library (ROCR)
library(gridExtra)

proc <- function(pr.m)
{
pr <- prediction(pr.m, actual)
pe <- performance(pr, "tpr", "fpr")
au <- performance(pr, "auc")@y.values[[1]]
pd <- data.frame(fpr=unlist(pe@x.values), tpr=unlist(pe@y.values))

p <- ggplot(pd, aes(x=fpr, y=tpr))

p <~ p + geom_line(colour="red")

p <- p + xlab("False Positive Rate") + ylab("True Positive Rate")

p <- p + ggtitle(deparse(substitute(pr.m)))

p <- p + annotate("text", x=0.50, y=0.00, hjust=0, vjust=0, size=5,
label=paste("AUC =", round(au, 2)))

return(p)

}

grid.arrange(proc(pr.nb), proc(pr.rp), proc(pr.rf),
proc(pr.wsrp), proc(pr.wsrf), ncol=3)

pr.nb pr.rp pr.rf

1.00 - 1.00 - 1.00-
Lo7s- Lo75- Lo75-
214 [hq @
Qo Q [
2 2 2
= =4 =
g 0.50 - gOSO* -gOSOf
a8 o o
[[} [}
=1 = =)
E0.25- E0.25- E0.25-

0.00 - AUC =0.84 0.00- AUC = 0.69 0.00- AUC =0.88

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

False Positive Rate

pr.wsrp
1.00 -

True Positive Rate
o o
[~
o (4]
:]

<

N}

@
|

AUC =0.73

i i | i |
0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.00 -

False Positive Rate

pr.wsrf
1.00 -

True Positive Rate
o o
@ 5
o (9]
:]

=}

N

a
|

AUC = 0.85

| | | i i
0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.00 -

False Positive Rate

Copyright (©) 2013-2014 Graham@togaware.com

Module: EvaluateO

Page: 9 of 22

Data Science with R Hands-On Evaluating Model Performance

10 ROC Curves—Applied to In-Production Results

ROC curves and the common measure of the area under the curve (AUC) have been shown by
Hand (2009) and Fawcett (2003) to have a number of deficiencies. Hari Koesmarno (2013) notes:
Hand (2009) illustrated that the area under the ROC curve (AUC) has a serious deficiency,
especially the AUC using different misclassification cost distributions for different classifiers.
This means that using the AUC is equivalent to using different metrics to evaluate different
classification rules. ROC curves are commonly used in medical decision making and in recent
years have been increasingly adopted in machine learning and data mining research communities
(Fawcett, 2003). The incoherency of the AUC has been studied by Fawcett (2006) and Hand
(2009). However ROC is suited to model comparison and selection with constant cost over a
training (rather then an in-production) population.

(Exercise: Include some ROC Curves to illustrate this point. J

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 10 of 22

Data Science with R Hands-On Evaluating Model Performance

11 Risk Chart

Random Forest

Risk Scores
090807 06 05 0.4 0.3 0.2 0.1 i
100 -] Lift
4
80 -
3
<
Q\/ 60 -
[}
o
c
<
£
2 2
&
40 -
1
20-
Recall (90%)
————— Risk (96%)
--------- Precision
O -

60 80 100
Caseload (%)

The concept of a risk chart was developed for the Australian Taxation Office, and implemented
in rattle (Williams, 2014). It is also similar to a cumulative gain chart. We use the random

forest model built earlier to generate the risk chart from the test dataset using riskchart ()
from Rattle.

riskchart(pr.rf, actual, risks, "Random Forest")

The risk chart plots the performance (the true positive rate) against the caseload (the combined
observations).

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 11 of 22

Data Science with R Hands-On Evaluating Model Performance

12 Risk Chart: Naive Bayes

Naive Bayes

Risk Scores
0.9 0.80.7.6).50.40.3 0.2 0.1

100 - I Lift

80 -
3
S
9_/ 60 -
Q
o
c
]
£
=
L 2
)
[
40 -
1
20-
Recall (86%)
————— Risk (92%)
--------- Precision
O -

60 80 100
Caseload (%)

riskchart(pr.rf, actual, risks, "Random Forest")

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 12 of 22

Data Science with R Hands-On Evaluating Model Performance

13 Risk Chart — Interpreting Based on Financial Risk

Although the previous risk chart is actually based on the weather dataset, we will describe it
in terms of predicting the risk that a income tax return is not correct. We might imagine 100
tax returns have been randomly chosen for auditing purposes. Of those just 23 have had some
requirement to change their tax return and to pay additional taxes. This is the 23% label on the
right hand end of the precision plot.

The x-axis is the case load. It represents the ordering by risk score of the tax payers. Those tax
payers with the highest score begin the queue at the left hand end of the axis and those with the
lowest scores at the right hand end of the axis. Thinking of the 100 taxpayers that have been
risk scored standing in a queue, they might be numbered from 1 to 100, and form the queue from
the highest risk score (on the left) to the lowest (on the right).

The distribution of the risk scores generated by the model are shown along the top of the chart.
We can see the higher risk scores on the left and the lower scores to the right.

The y-axis is a measure of the performance of the model in identifying the tax payers who required
an adjustment to be made to their tax return. A performance of 50%, for example, is then 50%
of the 23 tax payers (11 or 12 tax payers) whose tax return required an adjustment.

The black diagonal line is the performance we obtain if we randomly selected tax payers from
among the 100 chosen for auditing. If we randomly chose 40 tax payers (a caseload of 40%) then
we would expect to have a performance of 40%. That is, we expect to identify 40% of the 23 tax
payers requiring adjustments (9 tax payers)

The solid green and the dashed red lines are then the performance lift we obtain by using the
model. It is measured as the recall (of the tax payers requiring adjustments) and the risk (which
is the additional amount of tax the tax payer needs to pay). We use the model to prioritise the
tax payers rather than selecting them at random. If we now select 40% of the tax payers again,
but we chose those with the highest risk score, then we now expect to get about 84% of the 23
tax payers requiring adjustments (i.e., 19 of these tax payers). That is quite a lift over the 9
adjustment tax payers identified if we had selected the 40 to audit at random.

As we can see, using the model to select 40 tax payers delivers us twice as many of the tax payers
that we are really interested in. This is a lift of 2, and we can read the lift off of the dotted blue
precision line against the right hand axis. The precision or strike rate is actually the proportion
of the 40 cases selected that are the target tax payers. We can see that it is close the 50%, using
the left hand y-axis labels.

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 13 of 22

Data Science with R Hands-On Evaluating Model Performance

14 Risk Chart—AUC Interpretation

The area under a risk chart curve is calculated relative to a perfect model. The performance of
a perfect model is captured as the grey line we see in the risk chart. The grey line will have
two segments. The first segment is drawn from the origin to an intercept on the line where
y=100. The intercept is at the overall strike rate of the training data. The second segment
simply terminates at the top right corner of the plot.

The grey line would be the plot we would obtain for a perfectly accurate model. All and only
positive observations are given the higher scores by the model, and then the lower scores are
given only to negative observations. If this were the case for a model, then by the time we have
processed the strike rate number of highest scored observations, we will have covered all of the
positive observations.

In the risk chart below the strike rate is 23%. That is, 23% of the observations (which is of
course also 23% of caseload) are positive observations. Thus, the grey line’s internal point is at
100% performance after 23% of the caseload—a perfect model.

print (riskchart(pr.rf, actual, risks, "Random Forest"))

Random Forest

Risk Scores
09 08 07 06 05 04 03 02 01

100 - Lift

80~

60 -

Performance (%)

40-

20 -

Recall (90%)
- - -~ Risk (96%)
--------- Precision

))) i) i
0 20 40 60 80 100
Caseload (%)

The area under the curve that is reported for a risk chart is then the area under the curve relative
to this grey line, rather than relative to the whole chart. For an ROC curve, the perfect model
would be one where the first segment of the grey line runs along the y-axis to 100, and with
x=0. Note that for an ROC curve, x is the false positive rate, rather than the caseload. Thus
the AUC for and ROC is relative to the whole chart (which is the same as being relative to the
grey line on the ROC chart since it actually encompasses the whole chart).

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 14 of 22

Data Science with R Hands-On Evaluating Model Performance

15 Risk Chart—Actual Interpretation for Weather

The models we have built are actually based on the weatherAUS dataset.

(Exercise: Interpret the model based on the domain of predicting rain_tomorrow. J

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 15 of 22

Data Science with R Hands-On Evaluating Model Performance

16 Risk Chart—All Models

Display all Risk Charts as separate plots on a grid.

library(gridExtra)

rc.nb <- riskchart(pr.nb, actual, risks, "naive bayes")
rc.rp <- riskchart(pr.rp, actual, risks, "rpart")

rc.rf <- riskchart(pr.rf, actual, risks, "randomForest")
rc.wsrp <- riskchart(pr.wsrp, actual, risks, "wsrpart")
rc.wsrf <- riskchart(pr.wsrf, actual, risks, "wsrf")
grid.arrange(rc.nb, rc.rp, rc.rf, rc.wsrp, rc.wsrf, ncol=3)

naive bayes rpart randomForest
100 - :RiSk SRR 01 — Lift 100 - EW"'ES 0a Lift 100 - ?dﬁb.éé‘&‘[ﬁﬁ 02 u: - Lift
: - 4 4 : =9 i
= 80- : ~ 80- ~ 80-
3 T - i
2 60- 2 60- 2 60-
£ £ : £
2 2 2
= = 1 =
g 40- g 40- 8 40-
@ =-..Recall (86%) @ Recall (73%)) = Recall (90%)
[el 23% o L 23% a8 el 23%
20- o S ==== Risk (92%) 1 20- Y /S ====- Risk (82%) 1 20- Y / ==-== Risk (96%) 1
--------- Precision --e---+- Precision --e---+- Precision
0- 0- 0-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Caseload (%) Caseload (%) Caseload (%)
wsrpart wsrf
100 - B‘MPWS Lift 100 - 5%%%8!@&3 02 01 — Lift
£ 4 | =f 4
L
~ 80~ ~ 80~
=) S
3 - i
9 60- 2 60-
1] <
£ N 2 g N 2
g 40- g 40-
o) Recall (76%) @ - Recall (87%)
a ' 3% a e 23y
20- Y /== Risk (85%) 1 2 - P 7 . == = Risk (94%) 1
/4 B Pt T o Precision. W / = eceeeenes Precision
0- 0-
' ' ' i ' ' ' ' ' | i '
20 40 60 80 100 0 20 40 60 80 100
Caseload (%) Caseload (%)

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 16 of 22

Data Science with R Hands-On Evaluating Model Performance

17 Risk Charts—Evaluate Ongoing Model Deployment

A risk chart evaluates a model based on test data. When deployed the model may be used to
filter out observations (with a low risk score) and so they have no outcome recorded (some may
be false negatives). A risk chart of just the (high risk) audited cases can be misleading as in this
example where only those observations with a risk score greater than 0.5 are selected.

pi <- which(pr.rf > 0.5)
riskchart(pr.rf[pi], actuall[pil, risks[pi], "randomForest - Evaluation")

randomForest - Evaluation

Risk Scores

Performance (%)

Recall (89%)
- - Risk (105%)
........ Precision

J‘f‘, u‘fj (‘,‘C‘ ,}N
Caseload (%)

If we have available all scored observations and treat those not audited as true negatives, we
obtain a clearly too optimistic chart.

actualO <- actual; risksO <- risks; actualO[-pi] <- "No"; risksO[-pi] <- 0
riskchart(pr.rf, actualO, risksO, "randomForest - Evaluation with Dummies")

randomForest - Evaluation with Dummies

Risk Scores

Performance (%)

I O 1
- - Risk (101%)
........ Precision

0 20 40

60
Caseload (%)

The key is to note the presence of the grey line (the maximal performance line) and the corre-
sponding relative area under the curve calculation. These provide a clearer understanding of the
performance of the model on this censored evaluation dataset.

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 17 of 22

Data Science with R Hands-On Evaluating Model Performance

18 PSF Chart

The Proportional Score Function (PSF) chart is a useful tool for evaluating the ongoing perfor-
mance of a model. We can think of it as a visualisation of a confusion matrix, dividing the plot
into 4 regions corresponding to true/false positives/negatives. The idea was developed from the
statistical techniques developed by Koesmarno (1996).

We saw previously that a Risk Chart is not appropriate for the visualisation of the ongoing
performance of a deployed model. What we see in such a risk chart is the performance on the
high risk cases (those selected for action). A PSF Chart is a good alternative for measuring
classifier performance.

A PSF Chart displays the performance of a model for a chosen cutoff or threshold above which risk
scores are regarded to predict the positive class. By default, that the threshold is the traditional
0.5. The curve can provide insights into accuracy and the degradation in the performance of the
classifier.

print (psfchart(pr.rf, actual))

Proportional Score Function (PSF) Curve

0 0.03 0.09 0.2 0.43 1
1007 Ise Negatives (11%) False Positives (4%)

80 -

60 -
>
(8]
©
e
3
(8]
(8]
<
X
40 -
20 -
0- True Negatives (73%) True Positives (12%)
Threshold (0.5)
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Cases
Sorted by Increasing Risk Scores

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 18 of 22

Data Science with R Hands-On Evaluating Model Performance

19 PSF Chart—AIll Models

psf.rp <- psfchart(pr.rp, actual, bins=10)
psf.rf <- psfchart(pr.rf, actual)

psf.wsrp <- psfchart(pr.wsrp, actual)

psf.wsrf <- psfchart(pr.wsrf, actual)
grid.arrange(psf.rp, psf.rf, psf.wsrp, psf.wsrf)

Proportional Score Function (PSF) Curve Proportional Score Function (PSF) Curve
0.15 0.15 0.15 0.15 0.15 0.81 0 0.03 0.0p 0.2 0.43 1
100- raise Negatives (15%) False Positives (3%) 100 - e Negatives (11%) False Positives (4%)
80~ — 80-
3 60- 2 60-
g g
=] =3
o (53
Q Q
< <
X 40- R 40-
20- 20 -
o- True Negatives (75%) True Positives (8%) o- True Negatives (73%) True Positives (12%)
ald (n) ! ! ! ! ! ! Thr‘nehnld m R\‘ ! ! !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Cases Proportion of Cases
Sorted by Increasing Risk Scores Sorted by Increasing Risk Scores
Proportional Score Function (PSF) Curve Proportional Score Function (PSF) Curve
0 0 0 0 0 1 0 0 0.1 0.2 0.4 1
100~ Fase Negatives (15%) False Positives (3%) 100~ Fake Negatives (12%) False Positives (3%)
80- 80 -
& 60- 2 60-
s s
5 =
Q Q
o Qo
< <
X 40- 8 40-
20- 20-
- Trlie Negatives (74%) True Positives (8%) 0- Trde Negatives (74%) True Positives (11%)
ng i i i i i mm i i i i i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Cases Proportion of Cases
Sorted by Increasing Risk Scores Sorted by Increasing Risk Scores

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 19 of 22

Data Science with R

Hands-On

Evaluating Model Performance

20 PSF Chart—Options

psf.rfl
psf.rf2
psf.wsrfl
psf.wsrf2

<- psfchart(pr.
<- psfchart(pr.
<- psfchart(pr.
<- psfchart(pr

rf, actual, bins=10)

rf, actual, bins=50)

wsrf, actual, bins=5, threshold=0.3)
.wsrf, actual, bins=100, threshold=0.3)

grid.arrange(psf.rfl, psf.rf2, psf.wsrfl, psf.wsrf2)

Proportional Score Function (PSF) Curve

0 0.03 0.09 0.2 043
100- Faise i 1%)
80~
S 60-
g
3
o
1=
<
L 40-
20-
o- True Negatives (73%)
| | | Thrachald (0 &Y

0.0 0.2 0.4 0.6 0.8
Proportion of Cases
Sorted by Increasing Risk Scores

Proportional Score Function (PSF) Curve

0 0 of1 0.2
100~ False Negatives (8%)

80 -

3
|

% Accuracy
N

s

;

20~

o- True Negatives (68%)

i Thrn‘ehnld mn A i i

0.0 0.2 0.4 0.6 0.8
Proportion of Cases

Sorted by Increasing Risk Scores

I il
False Pgsitives (4%)

True Pogitives (12%)

1.0

0.4 1
False Positives (9%)

True Positives (15%)

1.0

100 -

80—

% Accuracy
»
8
:

IS
S
|

20 -

0-

100 -

80 -

@
S
|

% Accuracy
N

8

:

20~

Proportional Score Function (PSF) Curve

0 0.03 0.09 0. 0.43 il
legatives (11%) False Positives (4%)
True Negatives (73%) True Positives (12%)
| | Thrachald 0 R, | |
0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Cases
Sorted by Increasing Risk Scores
Proportional Score Function (PSF) Curve
0 0 0.1 0.2 0.4 1
False Negatives (8%) False Positives (9%)
Tiue Negatives (68%) True Positives (15%)
i i i i i
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Cases
Sorted by Increasing Risk Scores

Copyright (©) 2013-2014 Graham@togaware.com

Module: EvaluateO

Page: 20 of 22

Data Science with R Hands-On Evaluating Model Performance

21 Further Reading

The Rattle Book, published by Springer, provides a comprehensive
introduction to data mining and analytics using Rattle and R.
It is available from Amazon. Other documentation on a broader
selection of R topics of relevance to the data scientist is freely
available from http://datamining.togaware.com, including the
Datamining Desktop Survival Guide.

Graham Williams

Data Mining

with Rattle and R

This chapter is one of many chapters available from http://
HandsOnDataScience.com. In particular follow the links on the
website with a * which indicates the generally more developed chap- e
ters.

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 21 of 22

http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://datamining.togaware.com
http://datamining.togaware.com/survivor/index.html
http://HandsOnDataScience.com
http://HandsOnDataScience.com

Data Science with R Hands-On Evaluating Model Performance

22 References

Breiman L, Cutler A, Liaw A, Wiener M (2012). randomForest: Breiman and Cutler’s ran-
dom forests for classification and regression. R package version 4.6-7, URL http://CRAN.
R-project.org/package=randomForest.

Koesmarno HK (1996). “Class-size percentile transformation for reconstructing a distribution
function.” Journal of Applied Statistics, 23(4), 423-434.

Meng Q, Zhao H, Williams GJ (2014). wsrf: Weighted Subspace Random Forest. R package
version 1.3.17.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Sing T, Sander O, Beerenwinkel N, Lengauer T (2013). ROCR: Visualizing the performance of
scoring classifiers. R package version 1.0-5, URL http://CRAN.R-project.org/package=ROCR.

source code and/or documentation contributed by Ben Bolker GRWIR, Lumley T, Johnson
RC, are Copyright SAIC-Frederick RCJ, by the Intramural Research Program IF, of the NIH,
Institute NC, for Cancer Research under NCI Contract NO1-CO-12400 C (2013). gmodels:
Various R programming tools for model fitting. R package version 2.15.4.1, URL http://CRAN.
R-project.org/package=gmodels.

Therneau TM, Atkinson B (2014). rpart: Recursive Partitioning and Regression Trees. R
package version 4.1-8, URL http://CRAN.R-project.org/package=rpart.

Williams GJ (2009). “Rattle: A Data Mining GUI for R.” The R Journal, 1(2), 45-55. URL
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of excavating data for knowl-
edge discovery. Use R! Springer, New York. URL http://www.amazon.com/gp/product/
1441998896/ref=as_1i_qf_sp_asin_t17ie=UTF8&tag=togaware-20&linkCode=as2&camp=
217145&creative=399373&creativeASIN=1441998896.

Williams GJ (2014). rattle: Graphical user interface for data mining in R. R package version
3.1.4, URL http://rattle.togaware.com/.

Zhalama, Williams GJ (2014). wsrpart: Build weighted subspace rpart decision trees. R package
version 1.2.151.

This document, sourced from EvaluateO.Rnw revision 484, was processed by KnitR version 1.6
of 2014-05-24 and took 188 seconds to process. It was generated by gjw on nyx running Ubuntu
14.04.1 LTS with Intel(R) Xeon(R) CPU W3520 @ 2.67GHz having 4 cores and 12.3GB of RAM.
It completed the processing 2014-08-16 11:14:12.

Copyright (©) 2013-2014 Graham@togaware.com Module: EvaluateO Page: 22 of 22

http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=randomForest
http://www.R-project.org/
http://CRAN.R-project.org/package=ROCR
http://CRAN.R-project.org/package=gmodels
http://CRAN.R-project.org/package=gmodels
http://CRAN.R-project.org/package=rpart
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://rattle.togaware.com/

	Prepare Data for Modelling
	Build Models
	Confusion Matrix
	Confusion Matrix with Percentage
	Overall and Average Class Error
	Cross Tabulation Confusion Matrix
	Cross Tabulation: Random Forest
	ROC Curves
	ROC Curves—All Models
	ROC Curves—Applied to In-Production Results
	Risk Chart
	Risk Chart: Naive Bayes
	Risk Chart — Interpreting Based on Financial Risk
	Risk Chart—AUC Interpretation
	Risk Chart—Actual Interpretation for Weather
	Risk Chart—All Models
	Risk Charts—Evaluate Ongoing Model Deployment
	PSF Chart
	PSF Chart—All Models
	PSF Chart—Options
	Further Reading
	References

